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Abstract—Cannabis is consumed by the majority of young
adults in various societies even though its health risks are
relatively unknown [3]. While numerous studies have examined
the effects of cannabis use on 3D anatomical brain MRIs, the
use of machine learning in these analyses has been absent. This
project aims at comparing the brain MRIs of heavy cannabis
users and controls using machine learning techniques such as:
MONAI defined Dense CNNs, AlexNet3D, ResNet101, pretrained
ResNet101 and several decoders (including NILEARN’s SpaceNet
and an SVM coupled with ANOVA). Our study supplements work
done by Koenders et. al in 2016, who found that grey matter
volumes of some regions were correlated to cannabis use. We
find that Dense CNNs with a large amount of layers outperform
famous CNN architectures like the AlexNet and ResNet that
perform well on 2D classification challenges. However, further
prepossessing and feature extraction is needed to obtain signifi-
cant results. Although the decoders are outperformed by CNNs,
they are able to isolate regions of the brain that have high
predictive value to cannabis use. For example, the SVM decoder
isolates the auditory system in the temporal cortex, which is
consistent with the literature [5] [6] [7] and the SpaceNet decoder
isolates voxels in the occipital lobe.

I. INTRODUCTION

Cannabis is only completely illegal in 6 out of 50 US
states and is quickly becoming destigmatized worldwide [1].
Although it is currently the most consumed illicit drug in
the world [2], the effects of cannabis on the brain are
not well understood [3]. For neuroscientists to learn about
the morphological changes induced by heavy cannabis use,
they often rely on Magnetic Resonance Imaging (MRI), a
non-invasive procedure that creates detailed three-dimensional
anatomical images [4]. Resulting images capture grey matter
(GM), white matter (WM) and cerebrospinal fluid (CSF)
[4]. However, neuroscientists are often unequipped to employ
machine learning (ML) techniques to derive more complex
MRI features.

We suggest that applying ML to the analysis of 3D MRI
scans will provide valuable insight into the brain mechanisms
underlying cannabis use. The inputs of all our algorithms are
brain MRIs, labelled by the subject’s degree of cannabis use.
The output is either a classification as “control” vs. “heavy
cannabis user”, or a predicted score on the Cannabis Use
Disorder Identification Test (CUDIT). We propose several

strategies including Convolutional Neural Networks (CNNs),
transfer learning, and decoders. The CNNs comprise several
MONAI built-in DenseNets, as well as 3D versions of the
AlexNet and ResNet101. The ResNet is additionally imple-
mented with pre-trained weights derived from a kinetics video
classification task. The decoders output specific voxels that
have high correlations to the output, implicating specific brain
regions as being effected by cannabis use. The two decoders
used in this study are: 1) NILEARN’s defined SpaceNet and
2) a Support Vector Machine (SVM) that uses ANOVA to
determine significance. At websites such as OpenNeuroCV.org
and openfmri.org, there are a host of similarly organized
datasets to the current study. These experiments should thus
provide a foundation with which to explore other brain MRI
research.

II. RELATED WORKS

A. Cannabis Use and MRI Studies

The literature suggests that the effects of cannabis can
be seen in brain MRIs. In 2008, Yucel et. al used MRIs
to find that heavy cannabis users had bilaterally reduced
hippocampal and amygdala GM volumes, suggesting cannabis
can lead to cell death in brain regions with a high count
of endocannabinoid receptors [5]. These results were further
supported by Batistella et. al in 2014 who implicated more
brain regions such as the temporal and orbitofrontal cortices
[6].

Koenders et. al published a dataset in 2016 containing T1-
weighted structural Magnetic Resonance Imaging (sMRI) data
[7]. In this study, Koenders et. al were primarily focused on
correlating degree of cannabis use to GM volumes in select
Regions of Interest (ROIs) [7]. They found GM volumes of
the left hippocampus, amygdala and superior temporal gyrus
to be negatively correlated with cannabis use, consistent with
regions found by Yucel et. al [7].

Although the previous studies were effective, their research
was limited to observing the GM volumes of predefined ROIs
without ML. It is unlikely that this approach produces a
complete description of the effects cannabis use has on the
brain. CNNs should have the ability to derive more complex
features such as the volumes of more flexible ROIs, the
cumulative effect of several brain regions at once, and the



shape of those ROIs. In fact, researchers believe the effects of
cannabis on the brain are pervasive [8].

B. ML applied to Medical MRIs

Although ML has not been used in the context of cannabis
use, it has successfully examined brain MRIs in similar
fields. In 2018, Zhu et. al used CNNs in conjunction with
a Random Forest Classifier to predict alcohol dependence in
92 subjects [9]. In the same year, Iqbal et. al used several CNN
architectures along with extensive preprocessing to accurately
classify brain tumors in 220 subjects [10]. This study used
stochastic gradient descent (SGD) and a decaying learning rate
starting at 1e-2 to train their models [10]. Lu et. al used a pre-
trained AlexNet CNN architecture to detect pathological brain
MRIs which achieved 100% accuracy [11]. The pretrained
AlexNet outperformed the AlexNet trained from scratch [11].
Training was done with SGD and a learning rate of 1e-4 [11].
Lerousseau et. al similarly found success in classifying brain
tumors with MONAI’s DenseNet CNN architectures, training
with the Adam optimizer and learning rate of 1e-5 [12]. These
studies have similar input and output to the current study, and
were used to inform the methodology.

Salvatore et. al and Moradi et. al both used extensive
preprocessing with the SPM8 ToolKit to classify brains with
Parkinson’s and Alzheimer’s respectively [13] [14]. They did
not use neural networks, as Moradi et. al used a voxel-based
regularized logistic regression which outperformed clinician
accuracy (augmented with FreeSurfer-derived features) and
Salvatore et. al used Principal Component Analysis (PCA)
derived features along with a SVM [13] [14]. These are two
successful studies that highlight the power of preprocessing
and data augmentation, without needing CNN architectures.

III. DATASET

The data published by Koenders et. al follows the common
BIDS format and is downloaded from the public repository
https://openneuro.org/datasets/ds000174. Each subject is la-
belled as a control or heavy cannabis user and has a corre-
sponding CUDIT score, where a higher score means heavier
cannabis consumption. In all, there are 42 subjects of similar
age and sex, 20 of which are considered heavy cannabis
users and 22 of which are considered controls. The CUDIT
scores of control subjects (µ = 0.11) do not exceed 1 and the
scores of cannabis users (µ = 13.0) do not dip below 3. Each
subject supplies 2 MRIs to the dataset (one at baseline and
one at a 3-year follow-up), for a total of 84 MRIs. MRIs at
baseline are shape (256x182x256) and MRIs at follow up are
shape (256x256x170). For reference, Fig. 1 shows ‘sub-320’s
unprocessed MRI brain scan during the follow-up session.

In order to preprocess the MRIs, voxel intensities are
normalized between 0 and 1 and the images are smoothed with
a linear kernel. MRIs are also resized to the shape (96x96x96)
in order to compare MRIs at the 3-year follow-up and baseline.

Fig. 1. Subject ID 320: Brain at follow-up. Color represents voxel intensity
values

IV. METHODS

A. Proposed Approach

When testing the models’ performances, evaluation score is
derived from averaging across 3-fold Cross Validation (CV),
where each training point is in the validation set for one run.
Since the number of controls (22) vs. heavy cannabis users
(20) is relatively balanced, Accuracy and Balanced Accuracy
are the chosen evaluation metrics for the binary classification
task. For predicting CUDIT score, Mean Squared Error (MSE)
is the chosen metric.
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In order to assess the best CNN implementation, a rigorous
grid-search is implemented at a maximum of 50 epochs for
the binary classification task. The best implementation is then
tested at 200 epochs to observe its maximum score. This
implementation is additionally assessed at predicting CUDIT
scores. Due to time constraints, we are thus operating under
the assumptions that 1) the best implementation at 50 epochs
will be relatively succesful at 200 epochs, and 2) the best
implementation for the binary classification task is relatively
succesful at predicting CUDIT score.

The decoders undergo the same 3-fold CV during their
training and validation phases for each task. However, when
producing maps that isolate the voxels with the highest statis-
tical power, they are fit to the entire dataset.

B. Monai defined DenseNet Architectures

MONAI is a PyTorch based deep learning open-source
framework that supports analyzing MRI files of the format
“.nii.gz” [15]. DenseNet121, DenseNet169 and DenseNet264
are three densely connected CNNs with 121, 169 and 264 lay-
ers respectively. They are specified by the monai.nets.densenet
module. Dense CNNs connect each layer to every other layer
in a feed-forward fashion. They are known to strengthen fea-
ture propagation and reduce the number of parameters needed
to train the model, decreasing susceptibility to overfitting [16].

https://openneuro.org/datasets/ds000174


One of the inspirations for their creation was the redundancy
found in similar ResNet architectures [16].

A grid search inspired by the Related Works section is
utilized to find the optimal hyper-parameters for distinguishing
controls from heavy cannabis users in the binary classification
task. If not for time constraints, a more extensive grid search
would be executed. This task is run on the Google Cloud
Platform and takes advantage of CUDA. Table 1 outlines the
results.

• Learning Rates: [1e-3, 1e-5]
• Optimizers: [Adam, SGD]
• Loss Function: Cross Entropy Loss
• Max Epochs: 50

C. Classically Successful CNN Architectures: AlexNet and
ResNet

AlexNet is a famous CNN architecture that in 2012 dramat-
ically improved results on the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) [17]. AlexNet3D is Alex
Krizhevsky’s 2012 implementation with 3D convolutional lay-
ers and can be found at: https://github.com/denti/AlexNet3D.
AlexNet3D has 5 convolutional layers and 3 fully connected
layers. This implementation thus has far fewer layers and
weights than the DenseNets.

Residual Networks (ResNets) have similarly performed well
on the ILSVRC [18]. The specific implementation used in this
report can be found at https://github.com/Tushar-N/pytorch-
resnet3d/blob/master/models/resnet.py. We use ResNet101
with 101 layers.

Transfer learning conceptually seeks to improve perfor-
mance on a task through the incorporation of previously
assembled knowledge from similar tasks. In the context of
CNNs, this often involves the use of pretrained models with
saved weight parameters. This supplies a ”better-than-random”
starting point and allowed Lu et. al to improve their detection
of pathological brain MRIs as previously mentioned [11].
In our case, the ResNet CNN architecture is experimented
with and without pretrained weights from a kinetics task that
classifies videos.

The same exact grid search was performed on the above
networks as for the MONAI defined DenseNets, the results of
which can similarly be seen in Table 1.

D. Decoders: SpaceNet and SVM

NILEARN leverages the Sklearn toolbox and is a Python
module for analyzing NeuroImaging data. NILEARN’s api
resamples the images to the MNI-152 template, as well as
smooths and standardizes the images using the NiftiMasker
function. Both decoders undergo 3-fold CV to assess scores
in the binary classification task and CUDIT prediction task.

The first decoder is Sklearn’s implementation of SVM with
a linear kernel that works in conjunction with ANOVA tests
to determine the statistical importance of each voxel, where
the top 5% are selected. Sklearn s default settings are used.

The SpaceNetClassifier and SpaceNetRegressor are built-
in models from NILEARN that use a multivariate method for

brain decoding and segmentation. These SpaceNets can imple-
ment two spatial penalties that help improve brain decoding
power: ”graph-net” and ”tv-l1”.

Fig.2 reveals the most predictive voxels isolated by the
decoders. NILEARN’s plot stat map function is used to gen-
erate the figures. The predictive voxels are highlighted and
overlayed on top of a representation of the average MRI across
the dataset calculated using the nilearn.image.mean img func-
tion. Absolute value of weight reveals a voxel’s predictive
value, while positive (red-ish) vs. negative (blue-ish) sign
determines the direction of this correlation; a higher or lower
voxel intensity may correlate with more or less cannabis use.

Fig. 2. Decoded Voxels: SVM during binary classification (top), SpaceNet
with ”tv-l1” penalty during CUDIT Score Prediction (bottom)

E. Identifying Predictive Brain Regions

Since images are resampled to the MNI-152 reference
affine, the (x,y,z) coordinates refer to documented brain re-
gions. The voxels of highest predictive value according to the
SVM are clustered around the coordinates (-50, -33, 7) as
shown in Fig. 2. These coordinates are input into Neurosynth’s
“Locations” software [19] which isolates the auditory cortex
(in the temporal lobe) as belonging to these coordinates. The
same process is applied to the SpaceNet derived coordinates
of (10, -90,-10) which corresponds to the occipital lobe. The
penalty term did not significantly effect the identified voxels
and so only the tv-l1 is shown in Fig.2.

F. Best Implementation at 200 Epochs

Based on Table 1, DenseNet264 performs the best during
the 3-fold cross validated grid search. Fig. 3 shows the result
of this implementation tested at 200 epochs with the same
parameters. In Fig. 3, the left y-axis denotes the average
training loss per epoch while the right y-axis denotes the
classification accuracy at a specific epoch tested against the
validation set. Table 2 describes the results.



TABLE I
BINARY CLASSIFICATION OF MRIS AS CONTROLS OR HEAVY CANNABIS

USERS

Model Type Hyper-parameters Accuracy Balanced Accuracy
DenseNet121 Adam, 1e-3 0.61 0.60

Adam, 1e-5 0.67 0.65
SGD, 1e-3 0.59 0.60
SGD, 1e-5 0.64 0.55

DenseNet169 Adam, 1e-3 0.68 0.57
Adam, 1e-5 0.60 0.59
SGD, 1e-3 0.61 0.57
SGD, 1e-5 0.40 0.52

DenseNet264
Adam, 1e-3 0.60 0.61

Adam, 1e-5 0.66 0.65
SGD, 1e-3 0.58 0.59
SGD, 1e-5 0.61 0.61

AlexNet3D Adam, 1e-3 0.57 0.57
Adam, 1e-5 0.57 0.57
SGD, 1e-3 0.50 0.50
SGD, 1e-5 0.53 0.51

ResNet101 Adam, 1e-3 0.50 0.50
Adam, 1e-5 0.53 0.51
SGD, 1e-3 0.52 0.52
SGD, 1e-5 0.53 0.50

Pretrained
ResNet101

Adam, 1e-3 0.55 0.54

Adam, 1e-5 0.58 0.60
SGD, 1e-3 0.52 0.51
SGD, 1e-5 0.52 0.51

SpaceNet
graph-net penalty 0.51 0.46

tv-l1 penalty 0.46 0.50
SVM - 0.52 0.53

*Scores represent the average maximum accuracy across 3-fold CV and that
epoch’s corresponding balanced accuracy score

G. Predicting CUDIT Score

In order to predict CUDIT scores, the output layer of the
DenseNet264 is changed from size 2 to 30. Fig. 4 and Fig. 5
show the results of this implementation, while Table 2 shows
the success of several models at this task.

Fig. 3. Binary Classification Training. Average values across 3-fold CV
shown.

TABLE II
DENSENET264 BINARY CLASSIFICATION RESULTS AT 200 EPOCHS

Accuracy Balanced Accuracy Sensitivity Specificity
0.67 0.67 0.61 0.73

*Scores represent the average maximum accuracy across 3-fold CV and that
epoch’s other metrics

Fig. 4. CUDIT Score Prediction during Training. Average values across 3-fold
CV shown.

V. DISCUSSION

A. Controls vs. Heavy Cannabis Users

The DenseNets outperform all other implementations during
the 50 epoch grid-search. Not only do the DenseNets comprise
the best implementations, but they are more consistent across
different hyperparameters (Table 1). Although the DenseNets
perform similarly to each other, DenseNet264 with the Adam
optimizer and 1e-5 learning rate is the best implementation
with accuracy 66% and balanced accuracy 65% (Table 1).
When run for 200 epochs, this implementation slightly im-
proves to an accuracy across 3-fold cross validation of 67%
and balanced accuracy 67% (Table 2). However, Fig. 3 reveals
that accuracy does not generally improve in the later epochs.
Amongst the decoders, the SVM implementation performs the
best with an accuracy of 52% and balanced accuracy of 53%
(Table 1).

Although the pretrained ResNet101 was trained on a kinet-
ics task (quite dissimilar to the proposed MRI classification
task), it still slightly improves accuracy (from 0.53% to 0.58%)
and balanced accuracy (from 0.52% to 0.60%) (Table 1).

TABLE III
CUDIT SCORE PREDICTION RESULTS

Model MSE
DenseNet264 89

SpaceNet w/ graph-net 105
SpaceNet w/ tv-l1 112

SVM 99



Fig. 5. CUDIT Score Prediction Results. Average values across 3-fold CV
shown.

Should learning be transferred from another MRI classification
task, we suspect results would improve even more.

There is evidence to suggest both overfitting and underfitting
by the CNNs. As the number of layers increase in a model,
so do the number of weights that are being learned and
the potential for unnecessary complexity. The fact that the
DenseNet with the most layers (DenseNet264) outperforms
other DenseNets in the 50-epoch grid-search suggests that
the training data is not being overfit in the beginning. How-
ever, Fig. 3 shows that as epochs continue to increase, the
DenseNet264’s accuracy does not improve - likely due to
overfitting. This puts the assumption that relative success in
the grid-search holds at 200 epochs into question, as a smaller
model may overfit less, and improve better with more epochs.

The AlexNet has far fewer layers than the DenseNet and
ResNets, which may explain its shortcomings at classifying
the MRIs. However, the ResNet has the highest complexity of
all the models and also performs worse than the DenseNets in
the 50-epoch grid-search. These results suggest that classically
succesful CNN architectures on the ILSVRC are less well
suited to analyze 3D MRIs than denser CNNs architectures
with many layers.

B. Predicting CUDIT Score

DenseNet264 outperforms the decoders at predicting CU-
DIT scores with an MSE of 88.87. However, this cannot be
deemed successful since guessing the average CUDIT score
of 6.4 every time yields an MSE of 66.83. Fig. 4 shows
improvement over training with respect to average train loss
and MSE, which suggests that this model is not overfitting
the training data. Fig. 5 highlights the fact that the model
struggles to predict CUDIT score. Perhaps more epochs were
needed to obtain optimal score as convergence was not yet
met. The SVM decoder was once again more succesful than
the SpaceNets at this task.

C. Identifying Predictive Brain Regions

Neither decoder is particularly successful, meaning that the
isolated voxels need to be contemplated with skepticism. As

previously stated, the voxels identified by the SVM correspond
to the auditory system, which lies in the temporal cortex.
This brain region also important for memory [20] is consistent
with other cannabis studies that implicate the temporal cortex
[5] [6] [7]. Furthermore, this brain region is known to have
endocannabinoid receptors [20], making it a reasonable area
to find high predictive value. The SpaceNet decoders isolate
voxels in the occipital lobe, which is principally implicated
in visual processing. Although this is not a brain region
classically connected to cannabis use, the brain effects of
cannabis may be present throughout the brain [8].

D. Improvements to the Current Study

There are several ways the current study can be improved.
Further preprocessing the MRI images beyond smoothing and
normalizing would be a good first step. Moradi et. al and
Salvatore et. al found success in using the SPM8 preprocessing
package which includes skull-stripping, cropping, etc... [14]
[13]. Further preprocessing has not only the potential to
improve results, but can easily fit within the pre-existing code
base. There are also data augmentation techniques which can
be incorporated. Salvatore et. al used PCA to extract features
from the MRIs [13], and Moradi et. al proved the efficacy
of using FreeSurfer derived features such as thickness es-
timations, volumetric segmentation, inter-subject alignments,
etc... [21] [14]. A Random Forest classifier could combine the
output of CNNs and these extracted features.

Since transfer learning classically improves scores [11]
including our ResNet101 model, and large Dense CNNs
are succesful, we predict that large dense CNNs that were
previously trained on MRI analysis tasks pose the ideal model
type to continue research.

VI. CONCLUSION

Several strategies were implemented to try and differentiate
MRIs from subjects of varying cannabis use. The dense CNN
architectures with large number of layers tended to outperform
classically succesful models on the ILSVRC 2D classification
challenge and decoders. The highest achieved accuracy at
distinguishing cannabis users from controls was 67% and the
lowest MSE at predicting CUDIT scores was 88.87, neither
of which are significant results. The SVM decoder identified
voxels in the temporal cortex as being the most predictive
which is consistent with the literature [5] [6] [7]. Alternatively,
The SpaceNet decoders isolated regions in the occipital lobe.
This study successfully implemented DenseNets, AlexNet,
ResNet, transfer learning and several decoders to analyze brain
MRIs. There are several classically effective preprocessing
and data augmentation strategies that can supplement this
research. The methods outlined in this study and the attached
GitHub repo can help inform future brain MRI studies that are
inherently similar.
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CODE

GitHub link can be found at https://github.com/aaronsossin/
Cannabis-MRI-Machine-Learning. More details about the
code are found there.
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